Lecture: 3-6 Derivatives of Logarithmic Functions

Review: Derivatives of Exponential Functions:

- $\frac{d}{d x} e^{x}=$ \qquad - $\frac{d}{d x} a^{x}=$

Example 1: Find a formula for the derivatives of the following functions.
(a) $y=\ln x$
(b) $y=\log _{b} x$

Derivatives of Logarithmic Functions:

- $\frac{d}{d x} \ln x=$ \qquad - $\frac{d}{d x} \log _{b} x=$

Example 2: Find derivatives of the following functions.
(a) $y=\ln \left(4 x^{2}+5\right)$
(b) $y=\ln (\tan x)$

Example 3: Find derivatives of the following functions.
(a) $f(x)=\log _{10} \sqrt{x}$
(b) $g(x)=\log _{2}(\cos x)$

Example 4: Differentiate f and find the domain of f^{\prime}.
(a) $f(x)=\sqrt{5+\ln x}$
(b) $f(x)=\frac{x}{1-\ln (x+1)}$

Example 5: Differentiate the following functions.
(a) $y=\ln |x|$.
(b) $f(x)=\ln |\sec x+\tan x|$

It is often easier to first use the rules of logarithms to expand a logarithmic expression before taking the derivative. To do this properly you first must recognize when these rules can be applied and apply them correctly.

Rules and Non-Rules for Logarithms

- $\ln (A B)=$ \qquad
- $\ln (A / B)=$ \qquad
- $\ln \left(A^{r}\right)=$ \qquad
- $\ln (A+B)=$ \qquad
- $\ln (A-B)=$ \qquad
- $(\ln A)^{r}=$ \qquad

Example 6: Differentiate the following functions by first expanding the expressions using the rules for logarithms. Explain why this is the better way to proceed in each case.
(a) $f(x)=\ln \sqrt{5 x+2}$
(b) $g(x)=\log _{5}\left(x^{2} \sqrt{x+1}\right)$

Example 7: Differentiate $f(x)=\ln \left(\frac{x\left(x^{2}+1\right)^{2}}{\sqrt{2 x^{4}-5}}\right)$

Example 8: Differentiate the following functions.
(a) $f(x)=(\ln x)^{5}$
(b) $f(x)=\ln x^{5}$

Logarithmic Differentiation

Finding derivatives of complicated functions involving products, quotients and powers can often be simplified using logarithms. This technique is called logarithmic differentiation.

Example 9: Find the derivative of $y=\frac{x^{7} \sqrt{x^{3}+1}}{(5 x+1)^{4}}$.

Derivative Rules: Let n and a be constants. (Note, there is no rule when there is a variable in the base and the exponent.)

- $\frac{d}{d x} x^{n}=$ \qquad - $\frac{d}{d x} a^{x}=$ \qquad
When you have a variable in both the base and the exponent you must use
\qquad to find the derivative of the function.

Example 10: Find the derivatives of the following functions using logarithmic differentiation.
(a) $y=x^{2 / x}$
(b) $y=(\ln x)^{\cos x}$

Example 11: Find an equation of the tangent line to $f(x)=\ln (x+\ln x)$ at $x=1$.

Example 12: Let $f(x)=c x+\ln (\sin x)$. For what value of c is $f^{\prime}(\pi / 4)=6$?

